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Abstract. This paper examines the structural features of callgraphs.
The sample consisted of 120 malicious and 280 non-malicious executa-
bles. Pareto models were fitted to in-degree, out-degree and basic block
count distribution, and a statistically significant difference shown for the
derived power law exponent. A two-step optimization process involving
human designers and code compilers is proposed to account for these
structural features of executables.

1 Introduction

All commercial antivirus (AV) products rely on signature matching; the bulk of
which constitutes strict byte sequence pattern matching. For modern, evolving
polymorphic and metamorphic malware, this approach is unsatifactory. Clementi
recently checked fifteen state-of-the-art, updated AV scanner against ten highly
polymorphic malware samples and found false negative rates from 0-90%, with
an average of 48% [9]. This development was already predicted in 2001 [51].

Polymorphic malware contain decryption routines which decrypt encrypted
constant parts of the malware body. The malware can mutate its decryptors
in subsequent generations, thereby complicating signature-based detection ap-
proaches. The decrypted body, however, remains constant. Metamorphic mal-
ware generally do not use encryption, but are able to mutate their body in
subsequent generation using various techniques, such as junk insertion, semantic
NOPs, code transposition, equivalent instruction substitution and register reas-
signments [8][49]. For a recent formalization of these code mutation techniques,
the technical reader is referred to [17]. The net result of these techniques is a
shrinking usable “constant base” for strict signature-based detection approaches.

Since signature-based approaches are quite fast (but show little tolerance for
metamorphic and polymorphic code) and heuristics such as emulation are more
resilient (but quite slow and may hinge on environmental triggers), a detection
approach that combines the best of both worlds would be desirable. This is the
philosophy behind a structural fingerprint. Structural fingerprints are statistical
in nature, and as such are positioned as ‘fuzzier’ metrics between static signatures
and dynamic heuristics. The structural fingerprint investigated in this paper for
differentiation purposes is based on some properties of the executable’s callgraph.



The rest of this paper is structured as follows: Section 2 describes the setup,
data, procedures and results. Section 3 gives a short overview of related work
on graph-based classification. Section 4 sketches the proposed generative mech-
anism.

2 Generating the callgraph

Primary tools used are described in more details in the Acknowledgements.

2.1 Samples

For non-malicious software, henceforth called ‘goodware’, sampling followed a
two-step process: We inventoried all PEs (the primary 32-bit Windows file for-
mat) on a Microsoft XP Home SP2 laptop, extracted uniform randomly 300
samples, discarded overly large and small files, yielding 280 samples. For mali-
cious software (malware), seven classes of interest were fixed: backdoor, hacking
tools, DoS, trojans, exploits, virus, and worms. The worm class was further
divided into Peer-to-Peer (P2P), Internet Relay Chat/Instant Messenger (IR-
C/IM), Email and Network worm subclasses. For an non-specialist introduction
to malicious software, see [48]; for a canonical reference, see [50].

Each class (subclass) contained at least 15 samples. Since AV vendors were
hesitant for liability reasons to provide samples, we gathered them from herm1t’s
collection [24] and identified compiler and (potential) packer metadata using
PEiD. Practically all malware samples were identified as having been compiled
by MS C++ 5.0/6.0, MS Visual Basic 5.0/6.0 or LCC, and about a dozen samples
were packed with various versions of UPX (an executable compression program).
Malware was run through best-of-breed, updated open- and closed-source AV
products yielding a false negative rate of 32% (open-source) and 2% (closed-
source), respectively. Overall file sizes for both mal- and goodware ranged from
Θ(10kb) to Θ(1MB)1. A preliminary file size distribution investigation yielded a
log-normal distribution; for a putative explanation of the underlying generative
process, see [38] and [31].

All 400 samples were loaded into the de-facto industry standard disassem-
bler (IDA Pro [22]), inter- and intra-procedurally parsed and augmented with
symbolic meta-information gleaned programmatically from the binary via FLIRT
signatures (when applicable). We exported the identified structures exported via
IDAPython into a MySQL database. These structures were subsequently parsed
by a disassembly visualization tool (BinNavi [13]) to generate and investigate
the callgraph.

1 A function f(n) is Θ(g(n)) if there are positive constants c1, c2, and n0 such that 0 ≤
c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0 . See [26] for a readable discussion of asymptotic
notation etymology.



2.2 Callgraph

Following [14], we treat an executable as a graph of graphs. This follows the
intuition that in any procedural language, the source code is structured into
functions (which can be viewed as a flowchart, e.g. a directed graph which we
call flowgraph). These functions call each other, thus creating a larger graph
where each node is a function and the edges are calls-to relations between the
functions. We call this larger graph the callgraph. We recover this structure by
diassembling the executable into individual instructions. We distinguish between
short and far branch instructions: Short branches do not save a return address
while far branches do. Intuitively, short branches are normally used to pass
control around within one function of the program, while far branches are used
to call other functions.

A sequence of instructions that is continuous (e.g. has no branches jumping
into its middle and ends at a branch instruction) is called a basic block. We
consider the graph formed by having each basic block as a node, and each short
branch an edge. The connected components in this directed graph correspond to
the flowgraphs of the functions in the source code. For each connected component
in the previous graph, we create a node in the callgraph. For each far branch
in the connected component, we add an edge to the node corresponding to the
connected component this branch is targeting. Figs. 7 and 8 in the Appendix
illustrate a function’s flow- and callgraph, respectively.

Formally, denote a callgraph CG as CG = G(V, E), where G(·) stands for
‘Graph’. Let V =

⋃
F , where F ∈ normal, import, library, thunk. This just says

that each function in CG is either a ‘library’ function (from an external libraries
statically linked in), an ‘import’ function (dynamically imported from a dynamic
library), a ‘thunk’ function (mostly one-line wrapper functions used for calling
convention or type conversion) or a ‘normal’ function (can be viewed as the
executables own function). Following metrics were programmatically collected
from CG

– |V | is number of nodes in CG, i.e the function count of the callgraph
– For any f ∈ V , let f = G(Vf , Ef ) where b ∈ Vf is a block of code, i.e each

node in the callgraph is itself a graph, a flowgraph, and each node on the
flowgraph is a basic block

– Define IC : B → N where B is defined to be set of blocks of code, and
IC(b) is the number of instructions in b. We denote this function shorthand
as |b|IC , the number of instructions in basic block b.

– We extend this notation |·|IC to elements of V be defining |f |IC =
∑

b∈Vf
|b|IC .

This gives us the total number of instructions in a node of the callgraph, i.e
in a function.

– Let d+
G(f), d−G(f) and dbb

G (f) denote the indegree, outdegree and basic block
count of a function, respectively.
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Fig. 1. Correlation coefficient rin,out

2.3 Correlations

We calculated the correlation between in and outdegree of functions. Prior anal-
ysis of static class collaboration networks [44][40] suggest an anti-correlation,
characterizing some functions as source or sinks. We found no significant cor-
relation between in and outdegree of functions in the disassembled executables
(Fig. 1). Correlation intuitively is unlikely to occur except in the ‘0 outdegree’
case (the BinNavi toolset does not generate the flowgraph for imported func-
tions, i.e. an imported function automatically has outdegree 0, and but will be
called from many other functions).

Additionally, we size-blocked both sample groups into three function count
blocks, with block criteria chosen as Θ(10), Θ(100) and Θ(1000) function counts
to investigate a correlation between instruction count in functions and com-
plexity of the executable (with function count as a proxy). Again, we found no
correlation at significance level ≤ 0.001. Coefficient values and the IQR for in-
struction counts are given in Table 1. IQR, short for Inter-Quartile Range, is a
spread measure denoting the difference between the 75th and the 25th percentiles
of the sample values.

The first result corroborate previous findings; the second result at the phe-
nomenological level agrees with the ‘refactoring’ model in [40], which posits that
excessively long functions that tend to be decomposed into smaller functions.
Remarkably, the spread is quite low, on the order of a few dozen instructions.
We will discuss models more in section 4.

2.4 Function types

Each point in the scatterplots in Fig. 2 represents three metrics for one individ-
ual executable: Function count, and the proportions of normal function, static
library + dynamic import functions, and thunks. Proportions for an individual
executable add up to 1. The four subgraphs are parsed thusly, using Fig. 2(c)
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class metric Θ(10) Θ(100) Θ(1000)

Goodware r 0.05 -0.017 -0.0366
IQR 12 44 36

Malware r 0.08 0.0025 0.0317
IQR 8 45 28

Table 1. Correlation, IQR for instruction count

as an example. The x-axis denotes the proportion of ‘normal’ function, and the
y-axis the proportion of “thunk” functions in the binaries. The color of each
point indicates |V |, which may serve as a rough proxy for the executable’s size.
The dark red point at (X, Y )= (0.87, 0.007) is endnote.exe, since it is the
only goodware binary with functions count of Θ(104).

Most thunks are wrappers around imports, hence in small executables, a
larger proportion of the functions will be thunks. The same holds for libraries:
The larger the executable, the smaller the percentage of libraries. This is heavily
influenced by the choice of dynamic vs. static linking. The thunk/library plot,
listed for completeness reasons, does not give much information, confirming the
intuition that they are independent of each other, mostly due to compiler be-
havior.

2.5 α fitting with Hill estimator

Taking my cue from [43] who surveyed empirical studies of technological, so-
cial, and biological networks, we hypothesize that the discrete distributions of
d+(f), d−(f) and dbb(f) follows a truncated power law of the form Pd?(f)(m) ∼
mαd?(f)e−

m
kc , where kc indicates the end of the power law regime. Shorthand, we

call αd?(f) for the respective metrics αindeg, αoutdeg and αbb.
Figs. 3(a) and 3(b) show pars pro toto the fitting procedures for our 400

samples. The plot is an Empirical Complimentary Cumulative Density Function
Plot (ECCDF). A cumulative distribution function (CDF) F (x) = P [X ≤ x]
of a random variable X denotes the probability that the observed value of X
is at most x. ’Complimentary’ simply represents the CDF as 1− F (x), whereas
the prefix ‘empirical’ signifies that experimental samples generated this (step)
function.

The x-axis show indegree,the y-axis show the ECCDF P[X>x] that a func-
tion in endote.exe has indegree of x. If P[X>x] can be shown to fit a Pareto
distribution, we can extract the power law exponent for PMF Pd?(f)(m) from the
CDF fit (see [1] and more extensively [41] for the relationship between Pareto,
power laws and Zipf distributions). The probability mass function PMF p[X = x]
denotes the probability that a discrete random variable X takes on value x.

Parsing Fig. 3(a)): Blue points denotes the data points (functions) and two
descriptive statistics (median and the maximum value) for the indegree distri-
bution for endote.exe. We see that for endnote.exe, 80% of functions have
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Fig. 3. Pareto fitting ECCDFs, shown with Hill estimator inset

a indegree=1, 2% indegree >10. and roughly 1% indegree > 20. The fitted dis-
tribution is shown in magenta, together with the parameters α = 1.97 and
kc = 1415.83.

Although tempting, simply ‘eyeballing’ Pareto CDFs for the requisite linear-
ity on a log-log scale [21] is not enough: Following [38] on philosophy and [46] on
methodology, we calculate the Hill estimatorα̂ whose asymptotical normality is
then used to compute a 95% CI. This is shown in the inset and serves as a Pareto
model self-consistency check that estimates the parameter α as a function of the
number of observations. As the number of observations i increase, a model that
is consistent along the data should show roughly CIi ⊇ CIi+1. For an insightful
exposé and more recent procedures to estimate Pareto tails, see [56][16].

To tentatively corroborate the consistency of our posited Pareto model, 30
(goodware) and 21 (malware) indegree, outdegree and basic block ECCDF plots
were uniformly sampled into three function count blocks, with block criteria
chosen as Θ(10), Θ(100) and Θ(1000) function counts, yielding a sampling cov-
erage of 10 %(goodware) and 17%(malware). Visual inspection indicates that
for malware, the model seemed more consistent for outdegree than indegree at
all function sizes. For basic block count, the consistency tends to be better for
smaller executables. We see these tendency for goodware, as well, with the ob-
servation that outdegree was most consistent in size block Θ(100); for Θ(10) and
Θ(1000). For both malware and goodware, indegree seemed the least consistent,
quite a few samples did exhibit a so-called ‘Hill Horror Plot’ [46], where α̂s and
the corresponding CIs were very jittery.

The fitted power-law exponents αindeg, αoutdeg, αbb, together with individual
functions’ callgraph size are shown Fig. 4. For both classes, the range extends for
αindeg ≈ [1.5-3], αoutdeg ≈ [1.1-2.5] and αbb ≈ [1.1-2.1], with a slightly greater
spread for malware.
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2.6 Testing for difference

We now check whether there are any statistically significant differences between
(α, kc) fit for goodware and malware, respectively. Following procedures in [57],
We find αindeg, αoutdeg and αbb distributed approximately normal. The expo-
nential cutoff parameters kc are lognormally distributed. Applying a standard
two-tailed t-test (Table 2), we find at significance level 0.05 (tcritical=1.97) only
µ(αbb,malware) ≥ µ(αbb,goodware).

For the basic blocks, kc ≈ LogN(59.1, 52) (goodware) and ≈ LogN(54.2, 44)
(malware) and µ(kc(bb,malware)) = µ(kc(bb, goodware)) was rejected via Wilcoxon
Rank Sum with z = 13.4. The steeper slope of malware’s αbb imply that func-

class Basic Block Indegree Outdegree

GW N(1.634,0.3) N(2.02, 0.3) N(1.69,0.307)
MW N(1.7,0.3) N(2.08,0.45) N (1.68,0.35)

t 2.57 1.04 -0.47
Table 2. α distribution fitting and testing

tions in malware tend to have a lower basic block count. This can be accounted
for by the fact that malware tends to be simpler than most applications and op-
erates without much interaction, hence fewer branches, hence fewer basic blocks.
Malware tends to have limited functionality, and operate independently of input
from user and the operating environment. Also, malware is usually not compiled
with aggressive compiler optimization settings. Such a regime leads to more in-
lining and thus increases the basic block count of the individual functions. It
may be possible, too, that malware authors tend to break functions into simpler
components than ‘regular’ programmers. The smaller cutoff point for malware
seems to corroborate this, as well, in that the power law relationship holds over
a shorter range. However, this explanation should be regarded as speculative
pending further investigation.

3 Related work

A simple but effective graph-based signature set to characterize statically dis-
assembled binaries was proposed by Flake [18]. For the purposes of similarity
analysis, he assigned to each function a 3-tuple consisting of basic blocks count,
count of branches, and count of calls. These sets were used to compare malware
variants and localize changes; an in-depth discussion of the involved procedures
can be found in [14]. For the purposes of worm detection, Kruegel [27] extracts
control flow graphs from executable code in network streams, augments them
with a colouring scheme, identifies k-connected subgraphs that are subsequently
used as structural fingerprints.



Power-law relationships were reported in [52] [40] [53] [7]. Valverde et al
[52] measured undirected graph properties of static class relationships for Java
Development Framework 1.2 and a racing computer game, ProRally 2002. They
found the αJDK ≈ 2.5−2.65 for the two largest (N1=1376, N2=1364) connected
components and αgame ≈ 2.85 ± 1.1 for the game (N=1989). In the context of
studying time series evolution of C/C++ compile-time “#include” dependency
graphs, αin ≈ 0.97−1.22 and an exponential outdegree distribution are reported.
This asymmetry is not explained.

Focusing on the properties of directed graphs, Potanin et al [44] examined the
binary heap during execution and took a snapshot of 60 graphs from 35 programs
written in Java, Self, C++ and Lisp. They concluded that the distributions of
incoming and outgoing object references followed a power law with αin ≈ 2.5
and αout ≈ 3. Myers [40] embarked on an extensive and careful analysis of
six large collaboration networks (three C++ static class diagrams and three C
callgraphs) and collected data on in/outdegree distribution, degree correlation,
clustering and complexity evolution of individual classes through time. He found
roughly similar results for the callgraphs, αin ≈ αin ≈ 2.5, and noted that it was
more likely to find a function with many incoming links than outgoing ones.

More recently, Chatzigeorgiou et al [7] applied algebraic methods to iden-
tify, among other structures, heavily loaded ‘manager’ classes with high in- and
outdegree in three static OO class graphs. In the spirit of classification through
motifs in [35] and graphlets in [45], Chatzigeorgiou proposes a similarity-measure
algorithm to detect Design Patterns [20], best-practices high level design struc-
ture whose presence manifest themselves in the form of tell-tale subgraphs.

Analysis of non-graph-based structural features of executables were under-
taken by [30] [4] [54]. Li et al [30] used statistical 1-gram analysis of binary
byte values to generate a fingerprint (a ‘fileprint’) for file type identification and
classification purposes. At the semantically richer opcode level, Bilar [4] investi-
gated and statistically compared opcode frequency distributions of malicious and
non-malicious executables. Weber et al [54] start from the assumption that com-
piled binaries exhibit homogeneities with respect to several structural features
such as instruction frequencies, instruction patterns, memory access, jumpcall
distances, entropy metrics and byte-type probabilities and that tampering by
malware would disturb these statistical homogeneities.

4 Optimization processes

In 2003, Myers [40], within the context of code evolvability, investigated how
certain software engineering practices might alter graph topologies. He proposed
a ‘refactoring’ model which was phenomenologically able to reproduced key fea-
tures of source code callgraphs, among them the in and outdegree distributions.
He noted that refactoring techniques could be rephrased as optimizations. Ear-
lier and more explicitly, Valverde et al [52] speculated that multidimensional
optimization processes might be the causative mechanism for graph topological
features they unearthed. It has also been suggested in other venues that opti-



mization processes are the norm, even the driving force, for various physical,
biological, ecological and engineered systems [15][47]. We share this particular
outlook.

We hypothesize that the call-graph features described in the preceding sec-
tions may be the phenomenological signature of two distinct, domain-specific
HOT (Highly Optimized Tolerance) optimization processes; one involving human
designers and the other, code compilers. HOT mechanisms are processes that
induce highly structured, complex systems (like a binary executable) through
heuristics that seek to optimally allocate resources to limit event losses in an
probabilistic environment [5].

4.1 Background

For a historical sketch of models and processes that induce graphs, the reader
is referred to [42]; for a shorter, more up-to-date synopsis on power laws and
distinctive generative mechanisms, including HOT, see [41]. Variations of the
Yule process , pithily summarized as a ‘rich-get-richer’ scheme, are the most
popular. Physicist Barabasi rediscovered and recoined the process as ‘preferential
attachment’ [3], although the process discovery antedates him by at least forty
years (its origins lay in explaining biological taxa). In some quarters of the
physics community, power laws have also been taken as a signature of emergent
complexity posited by critical phenomena such as phase transitions and chaotic
bifurcation points [6].

The models derived from such a framework are mathematically compelling
and very elegant in their generality; with little more than a couple of parameter
adjustments, they are able at some phenomenological level to generate graphs
whose aggregate statistics (sometimes provably, sometimes asymptotically) ex-
hibit power-law distributions. Although these models offer a relatively simple,
mathematically tractable approximation of some features of the system under
study, we think that HOT models with their emphasis on evolved and engineered
complexity through feedback, tradeoffs between objective functions and resource
constraints situated in a probabilistic environment is a more natural and appro-
priate framework to represent the majority of real-life systems. We illustrate the
pitfalls of a narrow focus on power law metrics without proper consideration of
real-life domain specification, demands and constraints with Fig. 5 from [12]:
Note that the degree sequence in subfig e) is the same for all subfig a)-d), yet
the topological structure for subfigs. a)-d) is vastly different. Along these lines,
domain experts have argued against ‘emergent’ complexity models in the cases
of Internet router [29] and in river stream [25] structures.

4.2 Human design and coding as HOT mechanism

The first domain-specific mechanism that induces a cost-optimized, resource-
constrained structure on the executable is the human element. Humans using
various best-practice software development techniques [28][20] have to juggle at
various stage of the design and coding stages: Evolvability vs specificity of the
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system, functionality vs code size, source readability vs development time, de-
bugging time vs time-to-market, just to name a few conflicting objective function
and resource constraints.

Humans design and implement programs against a set of constraints. For an
involved discussion of software engineering practices and their relation to com-
plex networks, the reader is referred to [40]. Designers take implicitly (rarely
explicitly, though they should) the probability of the event space into consid-
eration, indirectly through the choice of programming language (typed, OO,
procedural, functional etc) and directly through the design choice of data struc-
tures and control flow. Human programmers generally design for average (or even
optimal) operating environments; the resulting programs deal very badly with
exceptional conditions effected by random inputs [34][33] and resource scarcity
[55].

For years, the most common attack technique has been exploiting input val-
idation vulnerabilities, accounting for over half of the published software vul-
nerabilities and over eighty percent of faults leading to successful penetration
attacks. Miller et al testing Unix, Windows and OS X utilities [34][33] by sub-
jecting them in the simplest case to random keyboard input, and reports crash
failure rates of 25%-40%, 24%, and 7%, respectively. More recently, Whittaker
et al [55] describe a dozen practical attack techniques targeting resources against
which the executable were constrained (primarily by the human designer); among
them memory, memory, disk space and network availability conditions. Effects
of so-called “Reduction of Quality” attacks against optimizing control systems
have also been studied by [37][36]. We shall give a toy example illustrating the
‘attack-as-system perturbation-by-rare-events’ view in Sec. 4.4.



(a) Compiler: CFG without loop unrolling (b) Compiler: CFG with loop unrolling

Fig. 6. Basic Block differences in CFG under compiler optimization regimes



4.3 Compiler as HOT mechanism

The second domain-specific mechanism that induces a cost-optimized, resource-
constrained structure on the executable is the compiler. The compiler functions
as a HOT process. Cost function here include memory footprint, execution cycles,
and power consumption minimization, whereas the constraints typically involves
register and cache line allocation, opcode sequence selection, number/stages of
pipelines, ALU and FPU utilization. The interactions between at least 40+ op-
timization mechanisms (in itself a network graph [39, pp.326+]) are so complex
that meta-optimizations [23] have been developed to heuristically choose a subset
from the bewildering possibilities. Although the callgraph is largely invariant un-
der most optimization regimes, more aggressive mechanisms can have a marked
effect on callgraph structure. Fig. 6(a) shows a binary’s CFG induced by the Intel
C++ Compiler 9.1 under a standard optimization regime. The yellowed sections
are loop structures. Fig. 6(b) shows the binary CFG of the same source code,
but compiled under a more aggressive inlining regime. We see that the compiler
unrolled the loops into an assortment of switch statements, vastly increasing the
number of basic blocks, and hence changing the executable’s structural features.

4.4 Example: PLR optimization problem as a HOT process

The HOT mechanism inducing the structure of the callgraph executable can be
formulated as a Probability, Loss, Resource (PLR) optimization problem, which
in its simplest form can be viewed as a generalization of Shannon source coding
for data compression [32]. The reader is referred to [11] for details; I just give a
sketch of the general formulation and a motivating example:

min J (1)

subject to
∑

ri ≤ R (2)

where

J =
∑

pili (3)

li = f(ri) (4)
1 ≤ i ≤ N (5)

We have a set of N events (Eq. 5) with occurring iid with probability pi

incurring loss li (Eq. 3), the sum-product of which is our objective function to
be minimized (Eq. 1).Resources ri are hedged against losses li (Eq. 4), subjected
to resource bounds R (Eq. 2). We will demonstrate the applicability of this PLR
model with the following short C program, adapted from [19]:



#include <s t d l i b . h>
#include <s t d i o . h>
#include <s t r i n g . h>

int provePequalsNP ( )
{
/∗ Next paper . . ∗/
}
int bof ( )
{
char bu f f e r [ 8 ] ; /∗ an 8 by t e charac t e r b u f f e r ∗/
s t r cpy ( bu f f e r , g e t s ( ) ) ; /∗ ge t input from the user ∗/
/∗ may not re turn i f b u f f e r over f l owed
re turn 42;
}

i n t main ( i n t argc , char ∗∗ argv )
{
bo f ( ) ; /∗ c a l l bo f ( ) f unc t i on ∗/
/∗ execu t i on may never reach
next f unc t i on because o f ove r f l ow ∗/
provePequalsNP ( ) ;
return 1000000; /∗ e x i t wi th Clay p r i z e ∗/
}
}

We assume here that the uncertain, probabilistic environment is just the
user. She is asked for input in gets(), this represents the event. In the C code,
the human designer specified an 8 byte buffer (char buffer[8]) and the com-
piler would dutifully allocate the minimum buffer needed for 8 bytes (this is
the resource r). Hence, the constrained resources r is the variable buffer. The
loss associated with the user input event is really a step function; as long as
the user satisfies the assumption of the designer, the ‘loss’ is constant, and
can be seen (simplified) as just the ‘normal’ loss incurred in proper continu-
ation of control flow. Put differently, as long as user input is ≤ 8 bytes, the
resource r is minimally sufficient to ensure normal control flow continuation. If,
however, the user decides to input ‘Superfragilisticexpialidocious’ (which was im-
plicitly assumed to be an unlikely/impossible event by the human designer in the
code declaration), the loss l takes a huge jump: a catastrophic loss ensues since
strcpy(buffer,gets()) overflows buffer. The improbable event breaches the
resource and now, control flow may be rerouted, the process crashed, shellcode
executed via a stack overflow (or in our example, fame remains elusive). This is
a classic buffer overflow attack and the essence of hacking in general - violating
assumptions by ‘breaking through’ the associated resource allocated explicitly
(input validation) and implicitly (race condition attacks, for instance) by the
programmer, compiler or at runtime by the OS.

What could have prevented this catastrophic loss? A type-safe language such
as Java and C# rather than C, more resources in terms of buffer space and more



code in terms of bounds checking from the human designer’s side theoretically
would have worked. In practice, for a variety of reasons, programmers write un-
safe, buggy code. Recently, compiler guard techniques [10] have been developed
to make these types of system perturbation attacks against allocated resources
harder to execute or more easily to detect; again attacks against these compiler
guard techniques have been developed [2].

5 Conclusion

We started by analyzing the callgraph structure of 120 malicious and 280 non-
malicious executables, extracting descriptive graph metrics to assess whether
statistically relevant differences could be found. Malware tends to have a lower
basic block count, implying a simpler structure (less interaction, fewer branches,
limited functionality). The metrics under investigation were fitted relatively suc-
cessfully to a Pareto model. The power-laws evidenced in the binary call-graph
structure may be the result of optimization processes which take objective func-
tion tradeoffs and resource constraints into account. In the case of the callgraph,
the primary optimizer is the human designer, although under aggressive opti-
mization regimes, the compiler will alter the callgraph, as well.

6 Appendix

We illustrate the concept of a flowgraph, callgraph and basic block by means of
a fragment dissassembly2 of Backdoor.Win32.Livup.c. We focus on the function
sub 402400, consisting of six basic blocks. The flowgraph is given in Fig. 7. The
assembly code for one basic block starting at 0x402486 and ending with a jz at
0x4024B9 is given below. Fig 8 shows the callgraph of sub 402400.

l o c 402486 :
402486 push (0 x4143E4 , 4277220)
40248B push ebx
40248C lea eax , ss [ esp+var 14 ]
402490 push eax
402491 mov ss [ ebp+(0x14 , 2 0 ) ] , edi
402494 mov ss [ ebp+(0x18 , 2 4 ) ] , edi
402497 ca l l cs sub 402210
40249C push eax
40249D lea ecx , ss [ ebp+(0x1c , 2 8 ) ]
4024A0 mov byte ss [ esp+var 4 ] , byte 2
4024A5 ca l l cs sub 401570
4024AA mov eax , ss [ esp+var 14 ]
4024AE mov edx , ds [ o f f 4 19064 ]
4024B4 lea ecx , ds [ eax + (0xFFFFFFF4, 4294967284) ]

2 See www.viruslist.com/en/viruses/encyclopedia?virusid=44936 for more infor-
mation.



4024B7 cmp ecx , edx
4024B9 jz byte cs loc 4024D9

Fig. 7. Flowgraph for function sub 402400
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27. C. Krügel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm de-
tection using structural information of executables. In A. Valdes and D. Zamboni,
editors, Recent Advances in Intrusion Detection, volume 3858 of Lecture Notes in
Computer Science, pages 207–226. Springer, 2005.

28. J. Lakos. Large-scale C++ software design. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1996.

29. L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach to
understanding the internet’s router-level topology. In SIGCOMM ’04: Proceedings
of the 2004 conference on Applications, technologies, architectures, and protocols
for computer communications, pages 3–14, New York, NY, USA, 2004. ACM Press.

30. W.-J. Li, K. Wang, S. Stolfo, and B. Herzog. Fileprints: Identifying file types by
n-gram analysis. In SMC ’05:Proceedings from the Sixth Annual IEEE Information
Assurance Workshop on Systems, Man and Cybernetics, pages 64– 71, West Point
(NY), June 2005.

31. E. Limpert, W. A. Stahel, and M. Abbt. Log-normal distributions across the
sciences: Keys and clues. BioScience, 51(5):341–352, May 2001.

32. M. Manning, J. M. Carlson, and J. Doyle. Highly optimized tolerance and power
laws in dense and sparse resource regimes. Physical Review E (Statistical, Nonlin-
ear, and Soft Matter Physics), 72(1):016108–016125, July 2005, physics/0504136.

33. B. P. Miller, G. Cooksey, and F. Moore. An empirical study of the robustness
of macos applications using random testing. In RT ’06: Proceedings of the 1st
International workshop on Random testing, pages 46–54, New York, NY, USA,
2006. ACM Press.

34. B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of unix
utilities. Communication of the ACM, 33(12):32–44, 1990.

35. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network Motifs: Simple Building Blocks of Complex Networks. Science,
298(5594):824–827, 2002.

36. A. B. Mina Guirguis and I. Matta. Reduction of quality (roq) attacks on dynamic
load balancers: Vulnerability assessment and design tradeoffs. In Infocom ’07: Pro-
ceedings of the 26th IEEE International Conference on Computer Communication,
Anchorage (AK), May 2007 (to appear).

37. I. M. Mina Guirguis, Azer Bestavros and Y. Zhang. Adversarial exploits of end-
systems adaptation dynamics. Journal of Parallel and Distributed Computing, 2007
(to appear).

38. M. Mitzenmacher. Dynamic models for file sizes and double pareto distributions.
Internet Mathematics, 1(3):305–334, 2004.

39. S. S. Muchnick. pages 326–327.
40. C. Myers. Software systems as complex networks: Structure, function, and evolv-

ability of software collaboration graphs. Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics), 68(4):046116, 2003.

41. M. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics, 46(5):323–351, September 2005.

42. M. Newman, A.-L. Barabasi, and D. J. Watts. The Structure and Dynamics of
Networks: (Princeton Studies in Complexity). Princeton University Press, April
2006.

43. M. E. J. Newman. The structure and function of complex networks. SIAM Review,
45:167, 2003.

44. A. Potanin, J. Noble, M. Frean, and R. Biddle. Scale-free geometry in oo programs.
Commununication of the ACM, 48(5):99–103, 2005.
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